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Abstract:  This paper presents a general and systematic analysis of the 
problem of electromagnetic scattering by an arbitrary finite fixed object 
embedded in an absorbing, homogeneous, isotropic, and unbounded 
medium.  The volume integral equation is used to derive generalized 
formulas of the far-field approximation.  The latter serve to introduce direct 
optical observables such as the phase and extinction matrices.  The 
differences between the generalized equations and their counterparts 
describing electromagnetic scattering by an object embedded in a non-
absorbing medium are discussed.    
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1.  Introduction  

The past decade has revealed a growing interest in the problem of electromagnetic scattering 
by particles embedded in an absorbing host medium (see, e.g., [1–7] and references therein).  
The objective of the majority of publications on this subject has been to argue what modified 
quantities should serve in lieu of their conventional analogs appearing in the theories of single 
scattering and radiative transfer by spherical particles embedded in a non-absorbing host 
medium [8–14].  The intent of this paper and its multiple-scattering companion [15] is 
somewhat different.  The major objective is to perform as general an analysis of 
electromagnetic scattering as possible without providing a detailed microphysical 
specification of the scattering object and entering it into a numerical solver of the Maxwell 
equations.  I will assume, in particular, that particles are arbitrarily sized, shaped, and 
oriented.  The main subjects of this paper are single scattering by a fixed finite object, the far-
field approximation, and reciprocity relations.  In [15], I will analyze the problem of multiple 
scattering and provide a direct microphysical derivation of the radiative transfer equation 
which yields unambiguous formulas for the participating quantities.  The common philosophy 
adopted here as well as in [15] is that a theoretical quantity is worth being introduced only if it 
describes an actual optical observable or enters explicitly a formula for an actual optical 
observable. 

To achieve this overall objective, I will parallel the systematic analysis of electromagnetic 
scattering presented in [13, 14] with emphasis on the specific changes caused by letting the 
host medium be absorbing.  I will assume that the reader has access to [13, 14] and will use 
the same terminology and notation.      

2.  Volume integral equation 

Consider a fixed scattering object embedded in an infinite, homogeneous, linear, isotropic, 
and potentially absorbing host medium.  The scatterer occupies a finite interior region INTV  
and is surrounded by the infinite exterior region EXTV  such that ,    3

EXTINT ℜ=∪VV  where 
3ℜ  denotes the entire three-dimensional space.  The interior region is filled with an isotropic, 

linear, and possibly inhomogeneous material.  The scatterer can be either a single body or a 
cluster with touching and/or separated components.  Point O serves as the common origin of 
all position vectors r and as the origin of the laboratory coordinate system (Fig. 1). 

The frequency-domain monochromatic Maxwell curl equations describing the scattering 
problem are as follows [16]: 
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where ,)1(i 21−=  E is the electric field, H is the magnetic field, ω  is the angular frequency, 
1μ  and 1ε  are the permeability and complex permittivity of the host medium, and 2μ  and 

)(2 rε  are the permeability and complex permittivity of the scattering object.  Note that 2ε  is 
allowed to vary throughout the scattering object, whereas ,1ε  ,μ1  and 2μ  are assumed to be 
arbitrary but constant.  Since the first relations in Eqs. (1) and (2) yield the magnetic field 
provided that the electric field is known everywhere, we will look for the solution of Eqs. (1) 
and (2) in terms of only the electric field.  The latter satisfies the following vector wave 
equations: 

    ,        ,0    )()( EXT
2
1 Vk ∈=−×∇×∇ rrErE            (3) 

,        ,0    )()()( INT
2
2 Vk ∈=−×∇×∇ rrErrE            (4) 

where the wave numbers of the exterior and interior regions, 21
111 ]μ[εωk =  and 

,]μ)([    )( 21
222 rr εωk =  are, in general, complex-valued.  It is convenient for our purposes to 

represent the wave number of the host medium in terms of its real and imaginary parts: 
,i 111 kkk ′′+′=  where 01 >′k  and .01 ≥′′k   Equations (3) and (4) can be rewritten as a single 

inhomogeneous differential equation 

       ,        ),(    )()( 32
1 ℜ∈=−×∇×∇ rrjrErE k             (5) 
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Fig. 1.  Electromagnetic scattering by a fixed object. 
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and )(rm  is the refractive index of the interior relative to that of the exterior.  The complex 
wave numbers and the relative refractive index are, in general, frequency-dependent.  It 
follows from Eq. (6) that the forcing function )(rj  vanishes everywhere outside the interior 
region.  
 Repeating step-by-step the derivation outlined in Section 2.1 of [13] or Section 3.1 of [14], 
one can show that the general physically appropriate solution of Eq. (5) can be written in 
terms of the solution of the conventional volume integral equation (VIE) [17]: 
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where )(inc rE  is the incident field, I
�

 is the identity dyadic, ⊗  is the dyadic product sign, the 
dot is the scalar product sign, and the wave number of the host medium is now explicitly 
allowed to be complex-valued.  An essential ingredient of this derivation is the fact that the 
physically appropriate solution of the Helmholtz equation )(δ   ) ,()( 2

1
2 rrrr ′−−=′+∇ gk  with 

a complex 1k  is ||4)||exp(i  ) ,( 1 rrrrrr ′−′−=′ πkg  [18], where )(δ rr ′−  is the three-
dimensional delta function.  The second term on the right-hand side of Eq. (8) satisfies the 
requisite Sommerfeld radiation condition at infinity [18] and gives the scattered field .)(sca rE   
The latter can be expressed in terms of the incident field as follows: 
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where T
�

 is the dyadic transition operator satisfying the following integral equation: 
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Again, this equation does not differ mathematically from Eq. (2.18) in [13] or Eq. (3.1.24) in 
[14], but now the absorptivity of the host medium can affect its solution via the modified 
relative refractive index, Eq. (7), and the explicitly complex-valued wave number of the host 
medium. 

3.  Scattering in the far-field zone  

Let us now choose the origin O close to the geometrical center of the scattering object and 
assume that the distance r from O to the observation point r (Fig. 1) is much greater than any 
linear dimension of the scattering object: 

    r  >> r′  for any ,INTV∈′r           (11) 

where ||r=r  and .||r′=′r   We also assume that 

r

rk

2

|| 2
1

′
 << 1  for any .INTV∈′r            (12) 

Since 
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where rrr =ˆ  is the unit vector in the direction of r (Fig. 1), we have 
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Finally, assuming that  

   rk || 1  >> ,1                           (15) 

we obtain from Eqs. (8) and (14) 
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where the distance-independent amplitude of the transverse outgoing spherical wave is given 
by 
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The generalized far-field equations (16) and (17) show that the scattered field is attenuated not 
only by the factor r1  but also by the exponential absorption factor ).exp( 1rk ′′−    

Let us now assume that the incident field is a homogeneous plane electromagnetic wave 
given by 

    ,)ˆiexp(    )( inc
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0 =⋅ nE                (18) 

Note that inc
0E  is the electric field at the origin of the laboratory coordinate system.  We then 

have 
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where rn ˆˆsca =  is the scattering direction (see Fig. 1), A
�

 is the scattering dyadic such that  
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  and  ,    ˆ)ˆ ,ˆ( incincsca 0nnn =⋅A
�

              (20) 

and 0 is a zero vector.  The expression for the scattering dyadic in terms of the dyadic 
transition operator follows from Eqs. (9) and (20):  
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The elements of the scattering dyadic have the dimension of length and are independent of the 
distance r to the observation point.  However, A

�

 depends on the exact choice of the origin O 
with respect to the scattering object.  The dependence of the scattering dyadic on the 
absorption properties of the host medium enters through a non-zero value of 1k ′′  in Eqs. (21) 
and (10) and through the relative refractive index in Eq. (10). 

Equation (20) shows that only four out of the nine components of the scattering dyadic are 
independent in the spherical polar coordinate system centered at the origin, Fig. 1.  It is, 
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therefore, convenient to introduce the 22×  amplitude scattering matrix S describing the 
transformation of the -θ  and components-φ of the electric field vector of the incident plane 
wave into those of the scattered spherical wave: 
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    )ˆ( inc
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where E denotes a two-element column formed by the -θ  and components-φ of the electric 
field vector: 
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The elements of the amplitude scattering matrix have the dimension of length and are 
expressed in terms of the scattering dyadic as follows: 

  ,ˆˆ incsca
11 θθ ⋅⋅= AS

�

                  (24) 

  ,ˆˆ incsca
12 φθ ⋅⋅= AS
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                       (25) 

  ,ˆˆ incsca
21 θφ ⋅⋅= AS
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  .ˆˆ incsca
22 φφ ⋅⋅= AS
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From now on, I will assume that the scattering dyadic and the scattering amplitude matrix 
can be computed for a given scattering object by solving the differential Maxwell equations 
(subject to appropriate boundary conditions) or their integral counterparts.  Although many 
solution techniques discussed in [13, 19–22] have been traditionally applied to objects 
embedded in a non-absorbing host medium, the requisite extension to the case of an absorbing 
host medium is usually straightforward (cf. [3, 23, 24]). 

4.  Electromagnetic power  

Let us now consider the classical scattering situation shown in Fig. 2.  A finite fixed object is 
centered at the origin of the laboratory coordinate system and is illuminated by a plane 
electromagnetic wave incident in the direction of the unit vector .ˆ incn   Polarization-sensitive 
detectors are located in the far-field zone of the object.  The sensitive area of each detector is 
modeled as a plane circular surface element S  normal to and centered at a position vector r.  
Each detector is assumed to be well collimated, which means that electromagnetic energy 
incident on any point of the respective sensitive area S  is detected only if the corresponding 
propagation direction falls within a narrow acceptance solid angle Ω  centered around .r̂   I 
also assume that the diameter of the sensitive area S  is significantly greater than any linear 
dimension a of the scattering object:  D >> a.  This will ensure that the right-hand side of Eq. 
(37) below is positive, thereby making possible a meaningful measurement of extinction (see 
also [25]).  It is also assumed that the angular size of the sensitive area of a detector as viewed 
from the scattering object is small so that the scattered light impinging on different parts of S  
propagates in approximately the same direction.  This is equivalent to requiring that r  >> 

.2D   Furthermore, it is assumed that the solid angle subtended by the sensitive area as 
viewed from the scattering object is smaller than the detector angular aperture:  .  2

ΩrS <   
This ensures that all radiation scattered by the object in radial directions and impinging on S  
is detected.  Detector 1 in Fig. 2 is centered at the incidence direction, whereas detector 2 is 
oriented such that the incidence direction does not fall within its acceptance solid angle: 

.ˆ 2
inc

Ω∉n    
The time-averaged Poynting vector tt 〉′〈 ) ,(rS  at any point of the sensitive surface of a 

detector is the sum of three terms: 
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are the Poynting vector components associated with the incident and the scattered field, 
respectively, and 
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can be interpreted as the term caused by interaction between the incident and scattered fields 
[8]. 

We have for the incident wave in the far-field zone of the scattering object (cf. Appendix 
B of [14]): 
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Fig. 2.  Far-field optical observables. 
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while the transverse scattered spherical wave is given by 
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One can now derive that the total electromagnetic power received by detector 2 is given by   

         t
S

tSW 〉′〈⋅= ∫ ) ,(ˆd     )ˆ(
2  

2 rrr S  ≈ ,)ˆ( 
)2exp(

μ2
Re 2sca

12
1

1

1 ||
r

rk

ω

k
S rE

′′−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
        (36) 

whereas for the exact forward-scattering direction (detector 1) we have 
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where 1

~
Ω  is the solid angle centered around the direction incn̂  and subtended by the detector 

1 surface at the distance r from the particle.  
Equation (37) generalizes the optical theorem to the case of an absorbing host medium.  

The first term on the right-hand side is proportional to the detector area and is equal to the 
electromagnetic power that would be received by detector 1 in the absence of the scattering 
object.  The third term is independent of S  and describes attenuation caused by interposing 
the object between the light source and the detector.  Thus, the detector centered at the exact 
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forward-scattering direction measures the power of the incident light attenuated by the 
interference of the incident and scattered fields as well as a relatively small contribution from 
the scattered light.  The detector centered at any other direction registers only the scattered 
light. 

5.  Backscattering interference  

The presence of the terms proportional to )ˆˆ(δ inc rn ′+  in Eqs. (32) and (33) makes it 
instructive to also consider the flow of electromagnetic energy through a surface element S3 
normal to the backscattering direction and centered at the position vector .ˆ incnr−   The 
orientation of the surface element is given by the unit vector .ˆ incn−   It is straightforward to 
derive that the corresponding total electromagnetic power is given by 
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This formula is quite interesting.  The first term describes the flow of the incident energy 
through S3 and is negative since the direction of the energy flow is opposite to the orientation 
of the surface element.  The absolute value of this term increases exponentially with distance 
from the scattering object.  The second term is the power backscattered by the object.  The 
third term has no monotonous independence on r and describes the interference of the incident 
and backscattered waves [26]; it vanishes if the host medium is non-absorbing [27].  The 
result of the interference is a standing wave [28] which, because of the rapidly oscillating 
factor ),2iexp( 1rk′  does not cause a long-range transport of electromagnetic energy.  However, 
there is a stationary local transport of energy within wavelength-long elementary volume 
elements centered at the straight line extending from the origin of the coordinate system in the 
direction .ˆincn−   Since the solution of the frequency-domain scattering problem is time-
independent, there may not be infinite accumulation of energy at any point in the medium.  
Therefore, energy transported from one point of a wavelength-long volume element to another 
must be absorbed by the host medium.  This means that the backscattering interference causes 
additional absorption of electromagnetic energy at points along the straight line extending in 
the exact backscattering direction. 
 Although the backscattering interference is, no doubt, a real physical effect, its practical 
importance is limited.  Indeed, while the first and third terms on the right-hand-side of Eq. 
(37) are attenuated equally by absorption in the host medium, there is a notable difference 
between the first and third terms on the right-hand side of Eq. (38).  In a moderately or 
strongly absorbing host medium, the first term dominates the local flow of energy because of 
the rapidly growing exponential factor ).2exp( 1rk ′′   In a weakly absorbing medium, the third 
term can usually be neglected because )μ(Im 11k  is much smaller than ).μ(Re 11k    

6.  Phase matrix 

Since both the incident homogeneous plane wave and the scattered outgoing spherical wave 
are transverse, we can introduce the corresponding coherency column vectors, J, and Stokes 
column vectors, I, as follows:  

#87345 - $15.00 USD Received 10 Sep 2007; revised 24 Sep 2007; accepted 24 Sep 2007; published 26 Sep 2007

(C) 2007 OSA 1 October 2007 / Vol. 15,  No. 20 / OPTICS EXPRESS  13196



 

 ,

)(

)(

)(

)(

 
μ2

Re  

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

1

1inc

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∗

∗

∗

∗

φφ

θφ

φθ

θθ

EE

EE

EE

EE

ω

k
J            (39) 

           

)]ˆ()[ˆ(

)]ˆ()[ˆ(

)]ˆ()[ˆ(

)]ˆ()[ˆ(

 
μ2

Re  )ˆ(

scascascasca

scascascasca

scascascasca

scascascasca

1

1scasca

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∗

∗

∗

∗

nn

nn

nn

nn

n

rErE

rErE

rErE

rErE

ω

k
r

φφ

θφ

φθ

θθ

J  

           ,

)]ˆ()[ˆ(

)]ˆ()[ˆ(

)]ˆ()[ˆ(

)]ˆ()[ˆ(

 
μ2

Re 
)2exp(

  

scasca
1

scasca
1

scasca
1

scasca
1

scasca
1

scasca
1

scasca
1

scasca
1

1

1
2

1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛′′−
=

∗

∗

∗

∗

nn

nn

nn

nn

φφ

θφ

φθ

θθ

EE

EE

EE

EE

ω

k

r

rk
           (40) 

    ,

])()([i

)()(

)()(

)()(

 
μ2

Re    

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

1

1incinc

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

∗∗

∗∗

∗∗

∗∗

φθθφ

θφφθ

φφθθ

φφθθ

EEEE

EEEE

EEEE

EEEE

ω

k
JDI         (41) 

     ,

])()([i

)()(

)()(

)()(

 
μ2

Re 
)2exp(

    )ˆ(    )ˆ(

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

sca
1

1

1
2

1scascascasca

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛′′−
==

∗∗

∗∗

∗∗

∗∗

φθθφ

θφφθ

φφθθ

φφθθ

EEEE

EEEE

EEEE

EEEE

ω

k

r

rk
rr nn JDI  (42) 

where 

    .

0ii0

0110

1001

1001

    

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
=D             (43) 

According to their definition, the elements of the Stokes column vectors are always real-
valued.  The first Stokes parameter, I, gives the total intensity of a wave.  It is straightforward 
to show that 

 incincsca
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r
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and 
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)2exp(
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r
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where the elements of the corresponding phase matrices are expressed in terms of the 
amplitude matrix elements )ˆ ,ˆ( incsca nnijS  as follows: 
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or, explicitly, 
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The elements of both phase matrices have the dimension of length and are independent of the 
distance from the origin of the laboratory coordinate system to the observation point.  The 
elements of the Stokes phase matrix are real-valued. 
 Let us now assume that both detectors of electromagnetic radiation in Fig. 2 are 
polarization sensitive and allow one to measure all four Stokes parameters of light impinging 
on them.  By analogy with Eq. (36), the polarized reading of detector 2 is given by 

 Signal 2  ≈ .)ˆ ,ˆ( 
)2exp(

    )ˆ(Δ
incincsca

2
1scasca IZI nnn

r

rk
rS

′′−
=                   (64) 

Note that incI  is the Stokes column vector of the incident wave at the origin of the laboratory 
coordinate system. 

7.  Extinction matrix 

Let us now consider the special case of the exact forward-scattering direction =  ˆ(r ).ˆ incn  
Because now both the incident homogeneous plane wave and the scattered outgoing spherical 
wave propagate in the same direction and are transverse, their superposition is also a 
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transverse wave propagating in the forward direction.  Therefore, we can define the coherency 
column vector of the total field for propagation directions r̂  very close to incn̂  as follows: 
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where the total electric field is given by 
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Integrating the elements of )ˆ( rrJ  over the surface of the collimated detector aligned normal to 
incn̂  and using Eqs. (32) and (34), we derive for the coherency-vector representation of the 

polarized signal recorded by detector 1 in Fig. 2: 
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where )ˆ ,ˆ( incinc nnJZ  is the forward-scattering coherency phase matrix, and the elements of the 
44×  coherency extinction matrix )ˆ( incnJ

Κ  are expressed in terms of the elements of the 
forward-scattering amplitude matrix )ˆ ,ˆ( incinc nnS  as follows: 
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In the Stokes-vector representation,  
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where 

 ).ˆ(    )ˆ( incinc nn rr JDI =             (70) 

The 44×  Stokes extinction matrix )ˆ( incnK  is given by   

    .)ˆ(    )ˆ( 1incinc −= DΚDΚ nn J             (71) 

The explicit formulas for the elements of this matrix in terms of the elements of the forward-
scattering amplitude matrix )ˆ ,ˆ( incinc nnS  are as follows: 
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The elements of the coherency and Stokes extinction matrices have the dimension of area and 
are independent of the distance r to the observation point. 

8.  Reciprocity and backscattering symmetry 

The reader can easily verify that Eq. (2.55) of [13] and Eq. (3.4.13) of [14] are quite general 
and are valid for absorbing as well as non-absorbing host media.  Furthermore, the only 
change in Eq. (2.61) of [13] and Eq. (3.4.18) of [14] is to replace 1k  with .1k′   Therefore, the 
resulting reciprocity relations for the scattering dyadic [29], the amplitude scattering matrix, 
and the phase and extinction matrices remain the same as in the case of a non-absorbing host 
medium:    
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and T denotes a transposed matrix.  The related backscattering symmetry properties 
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remain unchanged as well. 

9.  Discussion 

The formulas derived in this paper generalize those appearing in the theory of single 
scattering by a fixed object embedded in a non-absorbing medium [8, 13, 14].  In fact, the 
former can be reduced to the letter by setting 0μImIm 111 =′′== kε  and .11 kk =′  
 The generalized VIE (8) as well as the generalized equation for the dyadic transition 
operator, Eq. (10), fully retain their formal mathematical structure.  However, their solutions 
are now affected explicitly by non-zero absorptivity of the host medium.   

The dyadic transition operator is independent of the amplitude and propagation direction 
of the incident field, while still being dependent on the complex wave number of the host 
medium.  This means that T

�

 is independent of the specific location and orientation of the 
scattering object with respect to the incident field.  It depends, however, on the position and 
orientation of the object with respect to the laboratory coordinate system.  
 An absorbing host medium can support inhomogeneous plane waves for which the real 
and imaginary components of the wave vector are not parallel.  Since the definition of the 
Stokes parameters for such waves is problematic, our discussion of far-field scattering is 
limited to the case of illumination by a homogeneous plane wave.  The generalization to the 
case of illumination by a field expandable in homogeneous plane waves is quite 
straightforward.   

Equations (11), (12), and (15) generalize the conditions of applicability of the far-field 
approximation derived in [30] for the case of a non-absorbing host medium.  Although the 
corresponding modifications may appear to be insignificant mathematically, the practical 
implications of Eqs. (11), (12), and (15) can be quite dramatic if the host medium is even 
moderately absorbing.  Indeed, then the requisite minimal distance between the object and the 
observation point may turn out to be large enough to essentially extinguish any observable 
manifestation of electromagnetic scattering.  Thus Eqs. (11), (12), and (15) can often be 
expected to render the very concept of far-field scattering practically useless, unless 1k ′′  
remains sufficiently small. 

The scattering dyadic and the scattering amplitude matrix are naturally defined in such a 
way that they are independent of the amplitude of the incident field and, thus, of the position 
of the object with respect to the incident field.  They are also independent of the distance to 
the observation point, but depend on the incidence and scattering directions.  This way of 
defining the scattering dyadic also serves to preserve the fundamental Saxon’s reciprocity 
relation. 

The transversality of the incident plane wave and the scattered spherical wave allows for a 
straightforward generalization of the definition of the Stokes parameters as direct optical 
observables.  The quantities directly describing the response of far-field polarization-sensitive 
detectors of electromagnetic energy flow are the phase and extinction matrices.  They are 
expressed in terms of the amplitude scattering matrix and as such are independent of the 
amplitude of the incident field and of the distance to the observation point, but depend on the 
incidence and scattering directions.  They also satisfy the conventional reciprocity relations. 

It follows from Eqs. (64) and (69) that non-zero absorptivity of the host medium affects 
the result of a far-field optical measurement in two ways.  First, it attenuates both the incident 
light and the scattered light on their way to the detector.  Second, it modifies the values of the 
phase and extinction matrix elements.  One can expect that in many cases the first effect is 
likely to be more important.  Indeed, if absorption is strong enough to affect the optical 
properties of a wavelength-sized particle then it should be expected to be strong enough to 
extinguish any practically observable manifestation of scattering at a multi-wavelength 
distance from the particle to the detector. 

For a spherically symmetric particle, )0()ˆ ,ˆ()ˆ ,ˆ( 11
incinc

22
incinc

11 °≡= SSS nnnn  and  
.0)ˆ ,ˆ()ˆ,ˆ( incinc

21
incinc

12 ≡= nnnn SS   Therefore, the third term on the right-hand side of Eq. (69) 
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reduces to ,)2exp( inc
ext1 ICrk ′′−−  where the spherical-particle extinction cross section is given 

by 
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This formula corrects Eq. (11) of [23] and Eq. (8) of [4].  Indeed, taking into account that the 
definitions of the amplitude scattering matrix in this paper and in [23] differ by a constant 
factor ,i 1k  Eq. (11) of [23] can be re-written as ],)0(Im[4 111ext kSπC °=  which is different 
from Eq. (87) above.  The origin of the difference  can be traced back to Eqs. (6) and (7) of 
[23] which are applicable only if the wave number in the host medium is real-valued.  Since 
the latter is assumed to be complex in general, Eqs. (6) and (7) of [23] can be used only after 
separating out the real part of the wave number and making the exponent in Eq. (6) purely 
imaginary.  This, obviously, leads to Eq. (87) above.  
 As a final remark we note that the assumption that the host absorbing medium is infinite 
has simplified all derivations considerably, but is a mathematical idealization in that the 
growth of the incident energy flux as one moves in the direction incn̂−  appears to be 
unlimited.  Giving the medium a boundary located far from the scattering object and assuming 
that the source of the incident wave is located outside of this boundary offers a simple 
practical way out of this seemingly unphysical situation:  the energy flow would increase 
exponentially with distance from the object until the medium’s boundary is reached where it 
would then become constant.     
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